Icefin beneath the ice in Antarctica 2019

Week 5-7 Update: Icefin Team 2019 Antarctic Field Season

Sorry for the long delay between updates, friends! The Icefin team has been busy at work the past few weeks with both dive operations and deep field preparations, all culminating with a lovely Thanksgiving holiday. We’ve finally found the time to dig out the pen and ink (or computer, I suppose).

Figure 1: Icefin under the ice, photographed by USAP Diver Rob Robbins who was diving nearby.

On November 14, we were joined by the rest of the C-444 Thwaites-Melt team, including Keith Nicholls, Peter Davis, James Smith, Paul Anker, Catrin Thomas and James Wake from the British Antarctic Survey and David Holland and Aurora Basinski-Ferrisof NYU.

Figure 2: The Icefin and Melt teams took a moment for a group photo on the ice.
Figure 2: The Icefin and Melt teams took a moment for a group photo on the ice.

Figure 3: Still from an Icefin dive under the rift, showing the approximate vehicle position under the rift. The screen segments show vehicle attitude and depth on the left and snapshots of live data values we use to QC the data.
Figure 3: Still from an Icefin dive under the rift, showing the approximate vehicle position under the rift. The screen segments show vehicle attitude and depth on the left and snapshots of live data values we use to QC the data.

Among the highlights since our last update were our final four science dives in the McMurdo area. The team deployed Icefin at two additional sites along the roughly East-West running ice shelf rift that has been our primary science target of our operations out of McMurdo. This allowed us to map the structure of the underside of the rift along over a good segment of its length. As far as we know, this is possibly the first detailed and the most comprehensive underwater study of an ice shelf rift.

Figure 4: Forward looking sonar profiles of the narrow end and broad end of the rift, looking up.
Figure 4: Forward looking sonar profiles of the narrow end and broad end of the rift, looking up.

Rift formation is an important part of ice shelf evolution that contributes both to stabilizing the ice and to calving, depending on the setting and ocean conditions. With Icefin and its suite of oceanographic, biological, and perception sensors, we have surveyed the structure of the rift, ocean conditions underneath it to assess marine ice healing of the rift, as well as parameters that describe the water column conditions that affect ecosystems under the ice. We conducted three survey missions, including at two new sites, 19C and 19A, that allowed us to start at the narrow end of the rift where it begins as a crack to places where it splits into two systems, with segments as wide as 40m. Hopefully when combined with satellite remote sensing, we will have an excellent data set for comparison.

Figure 5: Data from dive 9 showing the ice surface (gray), ice base (black) and vehicle position (colored for depth). Each of the data streams can be plotted in a similar fashion to construct 3D data sets.
Figure 5: Data from dive 9 showing the ice surface (gray), ice base (black) and vehicle position (colored for depth). Each of the data streams can be plotted in a similar fashion to construct 3D data sets.

To some people, all ice looks the same, but to ice nerds like our team (ok, maybe mostly to the PI and science team), all of the varying ice structures and conditions beneath the rift are fascinating. The draft (depth) of the ice varies by up to 10m below the rift, with everything from semi-regular conical platelet lumps on either side to down-dropped blocks covered in platelets but with preserved angular features. We could watch (and have watched) the videos for hours. 

Figure 6: Bathymetric sonar data from Icefin’s new Norbit sonar, processed using the Qimera software package. During this part of the dive, we swam close to the edge of Observation Hill as it meets the seafloor.
Figure 6: Bathymetric sonar data from Icefin’s new Norbit sonar, processed using the Qimera software package. During this part of the dive, we swam close to the edge of Observation Hill as it meets the seafloor.

During our last dive, we deployed ICE03 at the Jetty (fish hut 19) and put together a basic mission to map sections of the bathymetry offshore McMurdo at great resolution with our new Norbit bathymetric sonar (another first for the team!) in preparation for our work to come out at Thwaites glacier. Excitingly, we also got to use this dive as an opportunity to train the rest of the MELT team on Icefin operations. The BAS and NYU teams got a chance to participate in deploying the vehicle, to see Icefin in action, and recover the vehicle. We also took a few great team photos.

Figure 7: Montage of the BAS-USAP Deep Field Shakedown. Top: Dan and Andy get schooled on the Primus lamp by BAS mountaineer James Wake, and Britney and Dan hang out in the Scott Tent, which will be what the team lives in during the Thwaites season. Bottom: James demonstrates the Tilly lamp operation as Keith, Pete, David and Aurora look on.
Figure 7: Montage of the BAS-USAP Deep Field Shakedown. Top: Dan and Andy get schooled on the Primus lamp by BAS mountaineer James Wake, and Britney and Dan hang out in the Scott Tent, which will be what the team lives in during the Thwaites season. Bottom: James demonstrates the Tilly lamp operation as Keith, Pete, David and Aurora look on.

It’s also been a time of training for our team, in preparation for the deep field. The part of the team going to Kamb Ice Stream (KIS) camp received a half-day Antarctic field training from Antarctic New Zealand while the MELT part of the team had an overnight training on the sea ice led by British Antarctic Survey mountaineers. The Kamb team had a dry run of camp arrangements and plans way back in October before deploying to the ice, but got to work with the ANZ crew on safety procedures for the camp. Because national programs have their own protocols for safety and operations, getting to participate in safety training prior to working together allows for a common language in the field.

Figure 8: Tent city out on the ice shelf (left) and the late-night view through the clouds back towards the instructor hut and Mt. Discovery.
Figure 8: Tent city out on the ice shelf (left) and the late-night view through the clouds back towards the instructor hut and Mt. Discovery.

The full Melt team completed our deep-field shakedown, where we had the opportunity to camp out for a night on the ice shelf as a team using the equipment we’ll be using out in the deep field. For the Icefin team, this was our first chance to experience the famous “man food” boxes that BAS is contributing to the project. We were introduced to Biscuits Brown and a surprising variety of dehy meals. The best part was definitely working with the classic Primus stoves and Tilly lamps. We’ve since had a course on their upkeep and repair as well, and are feeling ready for the field, whenever that should happen!

Figure 9: Packed house for the Wednesday night MELT lecture.
Figure 9: Packed house for the Wednesday night MELT lecture.

Figure 10: Seal in the dive hole while Icefin patiently waits to confirm heading solution.
Figure 10: Seal in the dive hole while Icefin patiently waits to confirm heading solution.

On Nov 20, David Holland organized the Melt team to give the Wednesday night lecture as a team to describe how the whole filed program will work, and the scientific motivation behind it. David, James Wake, Paul, Britney, Pete Davis, James Smith, Aurora, and Keith all gave short presentations about the field campaign, drill, and science plans. Britney introduced the Icefin team and described the plans for Icefin working at the grounding zone. The Crary Library was packed with folks curious about this large piece of the International Thwaites Glacier Collaboration.

Figure 11: Thwaites crew plus Enrica enter the final boxes into cargo, and begin the wait to fly out.
Figure 11: Thwaites crew plus Enrica enter the final boxes into cargo, and begin the wait to fly out.

Prior to the talk, part of the team also got to go over and visit Scott Base for dinner to catch up with our colleagues Greg Leonard and Maren Richter. Next year, we’ll be deploying Icefin along with these folks under Inga Smith’s Marsden project through the University of Otago. Following that work on the sea ice, we’ll be hoping to also join for a second season out at Kamb.

Figure 12: Paul Cutler introduces Britney and Icefin to the crowded galley for the Sunday night public lecture.
Figure 12: Paul Cutler introduces Britney and Icefin to the crowded galley for the Sunday night public lecture.

On Nov 24 Britney gave the Sunday night science lecture to a packed audience in the galley, who stuck around the talk for at Q&A session and swarmed in to take a look at Icefin’s science and navigation modules, which the team brought to the galley. It’s always one of the highlights of the season to get to share our work with and thank the community that works so hard to support the work we do. We showed videos of the missions under the rift as well as highlights from last season, and stuck around for an hour afterwards answering questions and hanging out with the robot.

Figure 13: Icefin pops through the platelet ice, viewed by our OpenROV Trident.
Figure 13: Icefin pops through the platelet ice, viewed by our OpenROV Trident.

The final push over the past two weeks has been to finish the season and get the two teams packed up for the deep field. As of today, both Icefins are packed and the team is patiently waiting for the weather to cooperate and allow flight opportunities to KIS camp and Thwaites camp. The weather has so far kept both teams in town, a full week of delays thus far for the Kamb team and ANZ drillers due to weather on the Siple coast. Thwaites operations have also slowed due to weather, but the site safety team (John “Loomy” Loomis, Seth Campbell, and James Wake) going in to prove the camp site is ready to fly on the next flight out. The positive note has been that we all got to spend Thanksgiving celebrations in McMurdo, have a delicious meal all together, and enjoy calling home for the holidays. The team participated in the Turkey Trot 5k, shared the Thanksgiving tradition with our British colleagues for their first Thanksgivings, and had the chance to spend more time together as a full team in advance of what will hopefully be the move out to Kamb this week for the ICE02 team.

Figure 14: We’ve been treated to some rare and beautiful snow days in McMurdo lately. This shot is from our dorm 207, back towards the Galley (blue), Southern, Crary lab, and Observation Hill in the background. Atop Ob Hill is across left by the returning party in honor of Robert Falcon Scott and his team that made it to the south pole, only to die in tragedy 12 miles from their food depot. The team heard two fantastic lectures by Artist & Writers program participant Sarah Airriess who is writing and illustrating a graphic novel about the expedition.
Figure 14: We’ve been treated to some rare and beautiful snow days in McMurdo lately. This shot is from our dorm 207, back towards the Galley (blue), Southern, Crary lab, and Observation Hill in the background. Atop Ob Hill is across left by the returning party in honor of Robert Falcon Scott and his team that made it to the south pole, only to die in tragedy 12 miles from their food depot. The team heard two fantastic lectures by Artist & Writers program participant Sarah Airriess who is writing and illustrating a graphic novel about the expedition.

This year the field team for Icefin consists of:
Britney Schmidt, Matt Meister, Dan Dichek, Anthony Spears, Justin Lawrence, Ben Hurwitz, Andy Mullen, Peter Washam, and Enrica Quartini.

RISE UPhttps://schmidt.eas.gatech.edu/project-rise-up/
MELThttps://schmidt.eas.gatech.edu/thwaites-melt/
ITGChttps://thwaitesglacier.org
RISPhttps://www.instagram.com/the_ross_ice_shelf_programme/

For more updates, pictures, and videos, find us on Facebook, Instagram, and Twitter @icefinrobot

 

Share this post

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on pinterest
Share on print
Share on email